skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Keasling, Jay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lee, Sang Yup (Ed.)
    ABSTRACT Quorum sensing (QS) enables coordinated, population-wide behavior. QS-active bacteria “communicate” their number density using autoinducers which they synthesize, collect, and interpret. Tangentially, chemotactic bacteria migrate, seeking out nutrients and other molecules. It has long been hypothesized that bacterial behaviors, such as chemotaxis, were the primordial progenitors of complex behaviors of higher-order organisms. Recently, QS was linked to chemotaxis, yet the notion that these behaviors can together contribute to higher-order behaviors has not been shown. Here, we mathematically link flocking behavior, commonly observed in fish and birds, to bacterial chemotaxis and QS by constructing a phenomenological model of population-scale QS-mediated phenomena. Specifically, we recast a previously developed mathematical model of flocking and found that simulated bacterial behaviors aligned well with well-known QS behaviors. This relatively simple system of ordinary differential equations affords analytical analysis of asymptotic behavior and describes cell position and velocity, QS-mediated protein expression, and the surrounding concentrations of an autoinducer. Further, heuristic explorations of the model revealed that the emergence of “migratory” subpopulations occurs only when chemotaxis is directly linked to QS. That is, behaviors were simulated when chemotaxis was coupled to QS and when not. When coupled, the bacterial flocking model predicts the formation of two distinct groups of cells migrating at different speeds in their journey toward an attractant. This is qualitatively similar to phenomena spotted in our Escherichia coli chemotaxis experiments as well as in analogous work observed over 50 years ago. IMPORTANCE Our modeling efforts show how cell density can affect chemotaxis; they help to explain the roots of subgroup formation in bacterial populations. Our work also reinforces the notion that bacterial mechanisms are at times exhibited in higher-order organisms. 
    more » « less
  2. Lipid composition determines the physical properties of biological membranes and can vary substantially between and within organisms. We describe a specific role for the viscosity of energy-transducing membranes in cellular respiration. Engineering of fatty acid biosynthesis inEscherichia coliallowed us to titrate inner membrane viscosity across a 10-fold range by controlling the abundance of unsaturated or branched lipids. These fluidizing lipids tightly controlled respiratory metabolism, an effect that can be explained with a quantitative model of the electron transport chain (ETC) that features diffusion-coupled reactions between enzymes and electron carriers (quinones). Lipid unsaturation also modulated mitochondrial respiration in engineered budding yeast strains. Thus, diffusion in the ETC may serve as an evolutionary constraint for lipid composition in respiratory membranes. 
    more » « less
  3. Abstract Azaserine is a bacterial metabolite containing a biologically unusual and synthetically enabling α‐diazoester functional group. Herein, we report the discovery of the azaserine (aza) biosynthetic gene cluster fromGlycomyces harbinensis. Discovery of related gene clusters reveals previously unappreciated azaserine producers, and heterologous expression of theazagene cluster confirms its role in azaserine assembly. Notably, this gene cluster encodes homologues of hydrazonoacetic acid (HYAA)‐producing enzymes, implicating HYAA in α‐diazoester biosynthesis. Isotope feeding and biochemical experiments support this hypothesis. These discoveries indicate that a 2‐electron oxidation of a hydrazonoacetyl intermediate is required for α‐diazoester formation, constituting a distinct logic for diazo biosynthesis. Uncovering this biological route for α‐diazoester synthesis now enables the production of a highly versatile carbene precursor in cells, facilitating approaches for engineering complete carbene‐mediated biosynthetic transformations in vivo. 
    more » « less